Этот баннер — требование Роскомнадзора для исполнения 152 ФЗ.
«На сайте осуществляется обработка файлов cookie, необходимых для работы сайта, а также для анализа использования сайта и улучшения предоставляемых сервисов с использованием метрической программы Яндекс.Метрика. Продолжая использовать сайт, вы даёте согласие с использованием данных технологий».
Политика конфиденциальности
|
|
|
Пятничная задачка для ума за 1 миллион $
|
|||
|---|---|---|---|
|
#18+
exp98jbond, не учи меня жить, лучше помоги доказать, что А*А обязателно неправильн, если А - правильн, с наскоку не получилось. Возможно, что также А*В - неправильн, если обе правильн. а что вы хотите получить? чтобы работало перемножение матриц стороны должны быть одинаковы кол-во строк A = кол-во столбов B или наоборот но в нашем случае это 2 одинаковых доски ... |
|||
|
:
Нравится:
Не нравится:
|
|||
| 25.09.2017, 12:44 |
|
||
|
Пятничная задачка для ума за 1 миллион $
|
|||
|---|---|---|---|
|
#18+
exp98Ааа, ясно .... выше снова хрень написал, надоело оправдываться, почистил бы кто за мной ... (((((( tip78 а что вы хотите получить? док-во либо оповержение гипотезы, сформулированной лишь на примерах N=8 и 5 ... |
|||
|
:
Нравится:
Не нравится:
|
|||
| 25.09.2017, 12:55 |
|
||
|
Пятничная задачка для ума за 1 миллион $
|
|||
|---|---|---|---|
|
#18+
неправильность - если по диагонали бьются, коллизии то есть по-местной терминологии. А так у нас они все квадратные. Для А2 критерий для диагоналей звучит так (перефразировка для циклических разложений): суммы всех пар соседних чисел различны и разности - тоже (а значит разнообразие и тех и других = N). Гипотеза в том, что сумм либо разностей пар через одного меньше N, а значит имеются 2 одинаковых значения. Либо непосредственно доказать перемножением, либо по индукции, либо ...... хрз. Для А*В - формулировка похожая. ... |
|||
|
:
Нравится:
Не нравится:
|
|||
| 25.09.2017, 13:05 |
|
||
|
Пятничная задачка для ума за 1 миллион $
|
|||
|---|---|---|---|
|
#18+
Коллеги, потратил вечер Получил пару формул расчета количества решений для задачи N ферзей. Просто пошел через разные константы. Одна формула, как выяснилось, почти повторяет расчеты Benoit Cloitre Nov 10 2002 (constant c around 2.54 such that a(n) is asymptotic to n!/c^n), но является расходящейся, как и его формула. Он не нашел константу, но там в принципе подходит (e) = exp(1). Надо калибровать. Вторая является сходящейся и с ростом n дает все более точные результаты (на имеющихся данных). Удивило, что для доски 15x15 точность равна 0,00028. Точность на 27x27 равна 0,0186 (при точности Benoit Cloitre 0,0879) - более чем в 4 раза лучше. Еще один компонент формулы мне не нравится, опять же надо калибровать. Думал, что решения четных и нечетных досок должны подчиняться разным закономерностям. Но это не так. Цифры страшенные получаются. Любые алгоритмы перебора в принципе никогда не справятся. Excel выдержал расчет количества решений для досок до 150x150. Что скажете, в этом есть какая-то ценность? Полезная ссылка: https://oeis.org/search?q=A000170 ... |
|||
|
:
Нравится:
Не нравится:
|
|||
| 26.09.2017, 13:14 |
|
||
|
Пятничная задачка для ума за 1 миллион $
|
|||
|---|---|---|---|
|
#18+
ex1276, конечно, есть. При желании, опубликовать можно. У буржуев есть онлайн журнал по комбинаторике, есть arxiv.org ... |
|||
|
:
Нравится:
Не нравится:
|
|||
| 26.09.2017, 14:27 |
|
||
|
Пятничная задачка для ума за 1 миллион $
|
|||
|---|---|---|---|
|
#18+
exp98, а я о своём безотносительно текущей ценности. Себе уже не верю. Пробую схематично повторить здесь факты из в/алгебры. Каждое {А^k} конечно, след-но когда-нить цепочка (траектория) повторится (к=р - наименьшее такое). Тогда предпоследний в цепочке Ар = Е, Ар-1 = А-1 = А*. Т.о. {А^k} - ЦГ порядка р. при любом А, в т.ч. и для наших правильных А. ЦГ - не пересекаются либо полностью подмнож-во одно другого. Отсюда сразу следует, что А2 не образует самостоятельную траекторию, иначе бы с неё начиналась другая цепочка, а они не могут пересекаться. Ниже для А - правильных. Также следует и то, что если А - правильн, тогда А2 (если порядок больше 3) не будет правильн (т.к. у каждой правильн своя траектория, и пересекаются только в Е). При р=3 имеем только {А, А*, Е}. Аналогично, никакая Аi из {А^k} не образует самостоятельную траекторию и одновременно она неправильн при р из [2, n-2]. С другой стороны, ЦГ A порядка, скажем 12, можно разложить в прямое произведение ЦГ-3 и Цг-4, т.е. в виде всех пар {bi*cj}, 3 и 4 - взаимопростые множители. В скобочной форме записи перестановок это выглядит типа (123)(4)(5)(6)(7)(8) * (1)(2)(3)(4567)(8) Пример. А= (1482)(356)(7) - правильн. В=(1482)(3)(5)(6)(7) , С= (1)(4)(8)(2)(356)(7) - неправ. А= В*С = С*В Теперь хочется проверить ещё гипотезу. А * В = С - неправ., если А и В правильные, т.е найденные траектории нельзя получить друг из друга умножением на правильную. ... |
|||
|
:
Нравится:
Не нравится:
|
|||
| 26.09.2017, 14:53 |
|
||
|
Пятничная задачка для ума за 1 миллион $
|
|||
|---|---|---|---|
|
#18+
exp98, немного запутывает дело терминология "правильности" перестановки, т.к. уже есть правильные матрицы и искомая расстановка ферзей как раз соответствует некоторой правильной матрице, но с дополнительным условием правильности - отсутствием атак по диагонали. ... |
|||
|
:
Нравится:
Не нравится:
|
|||
| 26.09.2017, 16:17 |
|
||
|
Пятничная задачка для ума за 1 миллион $
|
|||
|---|---|---|---|
|
#18+
А где раздел терминов? шучу ... я изначально здесь говорю так: Есть единичная матрица Е. Перестановками строк получаем все остальные. Всего N! матриц. Среди них только некотрые удовлетворяют правилам расстановки фишек для классич. задачи N-фишек. Их я зову правильными. (для n=8 их 92) Ак - эквивалент A^k Ар - эквивалент A^0 = A^p, p - порядок ЦГ ... |
|||
|
:
Нравится:
Не нравится:
|
|||
| 26.09.2017, 17:19 |
|
||
|
Пятничная задачка для ума за 1 миллион $
|
|||
|---|---|---|---|
|
#18+
Вообще, фигово, когда одни просто правильные, а другие более правильные ) Я пишу соответственно неправильные / правильные. ... |
|||
|
:
Нравится:
Не нравится:
|
|||
| 26.09.2017, 17:23 |
|
||
|
Пятничная задачка для ума за 1 миллион $
|
|||
|---|---|---|---|
|
#18+
А подкиньте, кому нетрудно, на пропитание правильные расстановки для N=9, штук 10-20 без симметрий. Одна у меня есть (13786254)(9). ... |
|||
|
:
Нравится:
Не нравится:
|
|||
| 26.09.2017, 18:21 |
|
||
|
Пятничная задачка для ума за 1 миллион $
|
|||
|---|---|---|---|
|
#18+
Давайте базу заведем. Я как бывший базовик могу взять на себя часть усилий. ... |
|||
|
:
Нравится:
Не нравится:
|
|||
| 26.09.2017, 19:03 |
|
||
|
Пятничная задачка для ума за 1 миллион $
|
|||
|---|---|---|---|
|
#18+
exp98А подкиньте, кому нетрудно, на пропитание правильные расстановки для N=9, штук 10-20 без симметрий. Одна у меня есть (13786254)(9). https://www.ibm.com/developerworks/community/blogs/HermannSW/resource/BLOGS_UPLOADED_IMAGES/n-queens_xsl.pdf?lang=en ... |
|||
|
:
Нравится:
Не нравится:
|
|||
| 26.09.2017, 19:22 |
|
||
|
Пятничная задачка для ума за 1 миллион $
|
|||
|---|---|---|---|
|
#18+
exp98Вообще, фигово, когда одни просто правильные, а другие более правильные ) Я пишу соответственно неправильные / правильные. Об этом речь. Сносит крышу, когда правильную матрицу называют неправильной. Называй по-другому как-нибудь, например, красивая ) ... |
|||
|
:
Нравится:
Не нравится:
|
|||
| 26.09.2017, 19:34 |
|
||
|
Пятничная задачка для ума за 1 миллион $
|
|||
|---|---|---|---|
|
#18+
Почему-то вспомнились фундаментальные частицы из физики. С довольно странными названиями типа кварк "красивый", кварк "прелестный" и т.п. Либо физики объединились в творческом экстазе с лириками либо это был просто троллинг уставших от прагматизма теоретиков. ... |
|||
|
:
Нравится:
Не нравится:
|
|||
| 26.09.2017, 23:00 |
|
||
|
Пятничная задачка для ума за 1 миллион $
|
|||
|---|---|---|---|
|
#18+
вот тут неплохой словарик ... |
|||
|
:
Нравится:
Не нравится:
|
|||
| 27.09.2017, 00:05 |
|
||
|
Пятничная задачка для ума за 1 миллион $
|
|||
|---|---|---|---|
|
#18+
Как хранить найденные матрицы? Если база - то оптимально положить вектор ферзей в строку. Причём так положить чтобы Учесть поиски остаточных решений. А также учесть в логике презентации (view) Повороты и отражения. ... |
|||
|
:
Нравится:
Не нравится:
|
|||
| 27.09.2017, 09:49 |
|
||
|
Пятничная задачка для ума за 1 миллион $
|
|||
|---|---|---|---|
|
#18+
Aleksandr Sharahovexp98Вообще, фигово, когда одни просто правильные, а другие более правильные ) Я пишу соответственно неправильные / правильные. Об этом речь. Сносит крышу, когда правильную матрицу называют неправильной. ...Но приговор с издёвкой И не согласен вовсе я, Меняй формулировку! (с) Чем же она правильная? правильная для ладей? - 2*2= ? - ну там 7, 8, но ни как не 9. - Ответ немножко правильный, но 7 более правильный, т.к. в стандартной метрике он ближе к искомому. Или расчётный счёт для платежа правильный, но не совсем. А, ерунда, попробуйте на другой счёт, может получится. Они все просто даны в исходном множестве перестановок из Е. Других матриц у меня для вас нет. А правильными везде называют искомые, у людей во всяк случ. Стало быть остальные неправильные. 2-значная классическая логика. Как раз разные там немножко правильные, чуть более чем немного менее правильные, по-другому правильные и т.п. -- вот это не как у людей. Привычка - дело такое ... ... |
|||
|
:
Нравится:
Не нравится:
|
|||
| 27.09.2017, 10:39 |
|
||
|
Пятничная задачка для ума за 1 миллион $
|
|||
|---|---|---|---|
|
#18+
maytonКак хранить найденные матрицы? Если база - то оптимально положить вектор ферзей в строку Да может банально в 4 столба? id, num, row, col ? для начала. К полю по его номеру доступаться не комильфо. Тем более рекуррентно доступаться. Вопрос другой, как долго хранитель будет хранить? ... |
|||
|
:
Нравится:
Не нравится:
|
|||
| 27.09.2017, 10:46 |
|
||
|
Пятничная задачка для ума за 1 миллион $
|
|||
|---|---|---|---|
|
#18+
exp98Aleksandr Sharahovпропущено... Об этом речь. Сносит крышу, когда правильную матрицу называют неправильной. ...Но приговор с издёвкой И не согласен вовсе я, Меняй формулировку! (с) Чем же она правильная? правильная для ладей?... Именно. В алгебре правильной матрицей часто называют матрицу без полностью нулевых строк и столбцов. Иногда различают правильные по строкам и правильные по столбцам. Но нам пофиг, конечно. А чтоб нас ваще никто не понял простыми назовем все числа, кратные 2, а четными все степени двойки ) ... |
|||
|
:
Нравится:
Не нравится:
|
|||
| 27.09.2017, 11:43 |
|
||
|
Пятничная задачка для ума за 1 миллион $
|
|||
|---|---|---|---|
|
#18+
Демагогия не в названиях. Видите ли, эти - неправильные, но мы их и не используем ... Здесь читать, здесь не читать, а здесь это мы рыбу заворачивали ... А зачем тогда о них вспоминать? Тем более не годится отсылка к тому, что ежели кто-то где-то иногда застолбил это название за другим свойством ... КМ не показатель - там как раз аналогов не было. В любом случае я 3 раза давал определение и поступил более логично, да и научно. И продолжу его придерживаться: - Определил рассматриваемое мн-во - Разделил его на 2 класса - Именовал классы (важно!) как можно более естесственно. Без вот этого предварительного шага: - Вспоминаем всё множество. - Забываем его бОльшую часть, но именуем её. - ..... ... |
|||
|
:
Нравится:
Не нравится:
|
|||
| 27.09.2017, 12:16 |
|
||
|
Пятничная задачка для ума за 1 миллион $
|
|||
|---|---|---|---|
|
#18+
exp98, да я не против, не пойми меня неправильно ) ... |
|||
|
:
Нравится:
Не нравится:
|
|||
| 27.09.2017, 12:32 |
|
||
|
Пятничная задачка для ума за 1 миллион $
|
|||
|---|---|---|---|
|
#18+
дык и я всего лишь иронизировал только на демагогию у меня рефлекс, трудно смолчать ... |
|||
|
:
Нравится:
Не нравится:
|
|||
| 27.09.2017, 14:16 |
|
||
|
Пятничная задачка для ума за 1 миллион $
|
|||
|---|---|---|---|
|
#18+
Коллеги, правильно я понимаю, что любой из алгоритмов перебора так или иначе имеет три блока: 1. Перебор ладейных матриц (нет пересечений ферзей по горизонталям и вертикалям) В сущности это достигается обычной перестановкой в комбинаторике, количество матриц = N! Асимптотическая формула количества таких матриц = КОРЕНЬ( 2 * ПИ() * N ) * ( N / EXP(1) ) ^ N Для доски 100x100, количество ладейных матриц = 10^158 2. Проверка матриц по диагоналям (нет пересечений ферзей на диагоналях) - неуникальные решения задачи Асимптотическая формула количество решений = КОРЕНЬ( 2 * ПИ() * M ) * ( M / EXP(2) ) ^ M , где M = N +1 Для доски 100x100, количество неуникальных решений = 10^116 3. Проверка решений на уникальность и подсчет количества решений. ... |
|||
|
:
Нравится:
Не нравится:
|
|||
| 27.09.2017, 18:19 |
|
||
|
Пятничная задачка для ума за 1 миллион $
|
|||
|---|---|---|---|
|
#18+
Так уж однозначно не скажу: 1) - да, по формуле Стирлинга 2) - да, формулой не интерсовался 3) - как вариант Можно добавить 4) Управление перебором / фильтрация (подряд / локальные поиски / рекуррентные поиски / ассоциативные поиски ...) Для задачи с начальным расположением п.4 актуален. ... |
|||
|
:
Нравится:
Не нравится:
|
|||
| 27.09.2017, 19:18 |
|
||
|
Пятничная задачка для ума за 1 миллион $
|
|||
|---|---|---|---|
|
#18+
1. Не совсем. Просто рекурсия или цикл по строкам. 2. Проверка по столбцам и диагоналям выполняется одновременно. 3. Проверка на уникальность нужна только при генерации всех расстановок с учетом симметрии. ... |
|||
|
:
Нравится:
Не нравится:
|
|||
| 27.09.2017, 19:50 |
|
||
|
|

start [/forum/topic.php?fid=16&msg=39526960&tid=1340254]: |
0ms |
get settings: |
10ms |
get forum list: |
13ms |
check forum access: |
4ms |
check topic access: |
4ms |
track hit: |
197ms |
get topic data: |
10ms |
get forum data: |
2ms |
get page messages: |
62ms |
get tp. blocked users: |
1ms |
| others: | 274ms |
| total: | 577ms |

| 0 / 0 |
